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Abstract
We study the effects of inhomogeneous pairing interactions and impurities
in short-coherence-length superconductors. Within the Born approximation,
the effects of pairing disorder and magnetic impurities are identical. The
T -matrices for pairing disorder sites with and without an impurity give rise
to bound states within the BCS (Bardeen–Cooper–Schrieffer) gap, consistent
with scanning tunnelling microscopy results on Bi2Sr2CaCu2O8+δ with Zn or
Ni impurities.

The effect of disorder in superconductors has long been a subject of considerable interest.
A generally accepted physical picture is that magnetic impurities destroy superconductivity
by locally breaking the pairs [1–4], whereas non-magnetic impurities are not pair breaking,
according to Anderson’s theorem [5]. This is true for an isotropic s-wave BCS superconductor,
in which the order parameter is uniform and momentum independent. Since in most high-
transition-temperature (Tc) cuprates, the suppressions of Tc with Zn and Ni doping are
comparable [6], there were proposals to explain this in terms of d-wave superconductivity [7].
However, nuclear magnetic resonance (NMR) experiments indicated that the nominally non-
magnetic Zn2+ ions polarize the spin background in the CuO2 planes upon substitution
of the S = 1/2 Cu2+ sites [6, 8]. Moreover, recent scanning tunnelling microscopy
(STM) measurements directly above the Zn or Ni impurity sites observed strong resonance
peaks [9, 10]. Very recently, several groups noticed from STM measurements that the non-
stoichiometric underdoped Bi2Sr2Cu2O8+δ (BSCCO) and Bi2−x PbxSr2Cu2O8+δ are extremely
disordered on a scale of a few nanometres [11–14]. This disorder is characterized by two gaps:
one corresponding to the superconducting gap, with characteristic superconducting peaks, and
a non-superconducting gap.

There is now a large body of evidence that the pseudogap observed in cuprates above Tc

is not superconducting [12, 15–19]. In particular, the pseudogap regime is field independent
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until one reaches the Zeeman field for breaking up chargeless spin-zero pairs [15]. This
is precisely consistent with the pseudogap being particle–hole pairs, such as in a charge-
density wave (CDW). Thus, if indeed the disorder involves a problem of percolation between
superconducting and density-wave regions on the scale of the superconducting coherence
length, then the phase coherence can only arise from Josephson coupling of the superconducting
grains, which could exist without trapped flux on a nanoscale for an s-wave superconductor. In
addition, one would expect the c-axis tunnelling to be very incoherent. Both of these properties
were inferred in BSCCO from c-axis twist Josephson junction experiments [20]. In addition,
features in the density of states (DOS) expected for a dx2−y2 -wave superconductor were not
observed [21].

In this letter, we assume that the superconductor is electronically disordered on the scale
of the coherence length. We further assume that the essential ingredient in the disorder is
not one of impurities, but rather disorder in the pairing interaction itself. Thus, we expect Tc

to vary from site to site, as does the resulting order parameter amplitude [22]. We treat this
type of disorder using a Bogoliubov–de Gennes procedure, assuming that the order parameter
amplitude varies locally [23–27].

Here we show that in the Born approximation, this problem maps exactly onto that of
pair breaking in a superconductor, with all of the features of that model, including gapless
superconductivity [1–4]. At a particular defect site, the T -matrix gives rise to bound states
within the gap, even without magnetic impurities.

We use the Nambu representation:

�†(r) = (c†
↑(r), c†

↓(r), c↑(r), c↓(r)), (1)

where c↓(r) (c†
↑(r)) annihilates (creates) a quasiparticle with spin eigenstate ↓ (↑) at the

position r. We set h̄ = c = kB = 1. The Hamiltonian under study is H = H0 + H1 + H2 + H3,
where

H0 =
∫

d3r�†(r)[ξ̂ (r)ρ3σ0 +�0ρ2σ2]�(r), (2)

Hi = 1
2

∫
d3r�†(r)V̂i(r)�(r), (3)

where V̂1(r) = U1(r)ρ3σ0, V̂2(r) = U2(r)S · �α/[S(S + 1)]1/2, �α = x̂ρ3σ1 + ŷρ0σ2 + ẑρ3σ3,
V̂3(r) = U3(r)ρ2σ2, ρ jσ j ′ ≡ ρ j ⊗ σ j ′ is a rank-4 tensor composed of two Pauli matrices for
j, j ′ = 1, 2, 3 and ρ0, σ0 are rank-2 identity matrices, respectively. H0 is the Bogoliubov–
de Gennes version of the BCS Hamiltonian, with momentum space quasiparticle energy
dispersion ξk relative to the Fermi energy µ, �0(T ) is the real bare uniform BCS order
parameter, and H1 and H2 are the interactions due to scattering off random non-magnetic
and magnetic impurities with effective potentials U1(r) and U2(r)/[S(S + 1)]1/2, respectively.
H3 with effective potential U3(r) is the usually neglected interaction arising from random
variations in the pairing interaction [22, 24–27]. In H2, S and S are the spin vector and
quantum number of the magnetic impurities, respectively, and �α represents the quasiparticle
spin eigenvector. We assume the spatial average of each random potential satisfies 〈Ui (r)〉 =
ni Ui (0) for i = 1, 2, 3, where ni is the density of defects of type i . In the absence of all
defects, the order parameter�0(T ) = V 〈c↑(r)c↓(r)〉 satisfies the standard BCS gap equation:

�0 = −V T
∑

|ωn |�ω0

∫
d3k

(2π)3
Tr[ρ2σ2Ĝ0(k, ωn)],

Ĝ−1
0 (k, ωn) = iωnρ0σ0 − ξkρ3σ0 −�0ρ2σ2,

(4)
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where Ĝ0 is the bare Green function matrix, V < 0 is the uniform (BCS) part of the pairing
interaction, N(0) is the single-spin quasiparticle DOS, ω0 is a BCS-like cut-off, and the ωn

are the Matsubara frequencies.
We assumed a real bare uniform order parameter �0, and restricted our consideration in

H3 to spatial fluctuations of the amplitude of�0. The model can also treat spatial fluctuations
of the phase of�0 by letting�0ρ1σ2 and U3(r)ρ2σ2 be generalized to�01ρ1σ2 +�02ρ2σ2 and
U31(r)ρ1σ2 + U32(r)ρ2σ2, respectively.

Our main interest lies in studying H3. Using quantum Monte Carlo techniques to study a
two-dimensional square lattice with an on-site attractive Hubbard pairing interaction in H0 [24],
Ghosal et al [12] obtained interesting results in excellent qualitative agreement with those
obtained from STM measurements. We also consider H1 and H2 for comparison, because
the combination of one or both of them with H3 can lead to novel behaviour. In the Born
approximation, these interactions add or subtract in a simple fashion. However, in the T -
matrix approximation for a single defect site, they combine in a highly non-trivial manner.

In the self-consistent Born approximation, the quasiparticle self-energy 
̂ = 
̂1 +
̂2 +
̂3,
where


̂i (k, ωn) = ni

∑
k′

V̂i(k − k′)Ĝ(k′, ωn)V̂i(k
′ − k), (5)

Ĝ−1(k, ωn) = Ĝ−1
0 (k, ωn)− 
̂(k, ωn), (6)

V̂i (k),Ui (k) are the spatial Fourier transforms of V̂i(r),Ui (r), respectively. Neglecting any
possible anisotropy arising from Fermi surface integrations, the effective rates of the three
processes are 1/τi = 2πni N(0)|Ui (kF )|2.

As in the usual pair-breaking theory [1–4], Ĝ has the same form as Ĝ0, except that ωn and
�0 are replaced by their renormalized equivalents ω̃n and �̃, respectively. We then obtain the
standard equations for the renormalized gap and Matsubara frequency:

ω̃n = ωn + (1/τ1 + 1/τpb)
ω̃n

2[ω̃2
n + �̃2]1/2

, (7)

�̃ = �0 + (1/τ1 − 1/τpb)
�̃

2[ω̃2
n + �̃2]1/2

. (8)

1/τpb = 1/τ2 + 1/τ3 (9)

is the total pair-breaking rate. The new physics arises from H3. Evidently, within the self-
consistent Born approximation, the effects of the random interactions are exactly equivalent
to those of magnetic impurities.

Using standard pair-breaking theory [1–4], one finds

ωn

�0
= u

(
1 − ζ√

1 + u2

)
, (10)

where u = ω̃n/�̃ and ζ = 1/(τpb�0). The spatial average gap�(T ) is then

� = π |V |N(0)T
∑

|ωn |�ω0

1√
1 + u2

, (11)

leading to the standard equation for Tc/Tc0 = t :

0 = ln(t) + ψ

(
1

2
+
αpb

2π t

)
− ψ

(
1

2

)
, (12)

where αpb = 1/(τpbTc0) and ψ(x) is the digamma function. For small αpb, as assumed
in conventional superconductors [25, 26], Tc ≈ Tc0 − π/4τpb. However, in extremely
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disordered superconductors such as BSCCO, Tc/Tc0 can be suppressed to zero even without
any magnetic impurities, for 1/τ3 � 1/τ3c = πTc0/2γ , where γ = 1.781 is the exponential
of Euler’s constant. In addition, the superconductivity becomes gapless for 1 > τ3c/τ3 �
12 exp(−π/4) ≈ 0.912. Thus, even an isotropic, s-wave superconductor can become gapless,
as observed in the cuprates with STM [9, 10, 13].

This can only occur in short-coherence-length superconductors with strong local
inhomogeneities in the pairing interaction, as is a likely explanation for the vanishing of the
Tc in the highly underdoped region of the cuprate phase diagram, although that region is also
complicated by the simultaneous appearance of local CDW order at the non-superconducting
regions not included in this calculation [12].

In order to make direct comparison with STM experiments, we solve the T -matrix for
a single defect site. We assume that the site has all three types of defect associated with
it. We approximate the effects of the magnetic impurity by assuming that its spin behaves
classically [28]. Then, the T -matrix equation can be solved exactly:

T̂ (ωn) = V̂ (0)

1̂ − ĝ0(ωn)V̂ (0)
, (13)

where V̂ (0) = ∑3
i=1 V̂i(0) and ĝ0(ωn) = −πN(0)[iωnρ0σ0 + �0ρ2σ2]/[ω2

n + �2
0]1/2 is the

bare Green function at the origin, 1̂ = ρ0σ0 is the rank-4 identity matrix, and the effects of
a finite quasiparticle energy bandwidth have been neglected. Bound states within the gap at
T = 0 at the frequency ω are obtained from

det |1̂ − ĝ0(iω)V̂ (0)| = 0. (14)

Solving equation (14) exactly, we generally obtain four bound states within the gap at
ω = ωb�0, where

ωb = ±[A + s R]1/2/B, (15)

A = 16v2
2v

2
3 + a2

+(a
2− + 4v2

1), B = a2
+ + 4v2

2 , C = a2
+ − 4v2

3 , R = [A2 − B2C2]1/2,
a± = v2

1 + v2
3 − v2

2 ± 1, vi = πN(0)Ui (0), and s = ±1.
We rewrite equation (15) for the special cases of two defects only. For non-magnetic

defects, v2 = 0, there are only two bound states symmetric about zero bias:

ωb → ± ([(1 + v3)
2 + v2

1][(1 − v3)
2 + v2

1])1/2

(1 + v2
1 + v2

3)
. (16)

For the trivial case of a site with just a non-magnetic impurity, equation (16) shows that
there are no poles inside the gap. However, for a pairing interaction defect alone, there are
poles at ωb = ±|1 − v2

3 |/(1 + v2
3).

For v3 = 0, there are also two bound states symmetric about zero bias, at

ωb → ± |1 + u+u−|
[(1 + u2

+)(1 + u2−)]1/2
, (17)

where u± = v1 ± v2. For v1 = 0, this reduces to the result of Shiba for a classical magnetic
impurity, ωb = ±|1 − v2

2 |/(1 + v2
2), even though we did not average over the classical spin

direction before summing the T -matrix [28].
The most interesting cases arise when 0 �= v2 �= v3 �= 0. When v1 = 0, there are four

bound states symmetric about zero bias at

ωb → ± (v
2
+ − v2− + s|1 − v2

+v
2−|)

(1 + v2
+)(1 + v2−)

, (18)
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Figure 1. Left: sketch of a bound state with v = (0, 0,±1), along with the DOS data from the
STM differential conductance above a Zn site in BSCCO [9]. Right: sketch of the two positive-bias
bound states obtained with v = (0,±0.51,±1.01), along with the data obtained above the Ni site
in BSCCO [10].

where v± = v2 ± v3. If either v2 or v3 = 0, or if v2 = v3, there are only two bound states
symmetric about zero bias. Equation (18) for either v2 = 0 or v3 = 0 reduces to equation (16)
or (17) with v1 = 0, respectively. For v2 = v3, it also reduces to equation (17) with v1 = 0 and
v2 → 2v2, etc. Moreover, setting v2 = v3 in equation (15) with v1 arbitrary leads to only two
bound states symmetric about zero bias, at ωb = ±[|b−|/b+]1/2, where b± = (1 + v2

1)
2 ± 4v2

2 .
Thus, we conclude that in order to obtain four bound states symmetric about zero bias, one
requires 0 �= v2 �= v3 �= 0.

When the defect is a quantum spin with a single component normal to the surface, the spin
operator Sz commutes with the Hamiltonian, and the spin states are easily described by |SM〉,
with Sz |SM〉 = M|SM〉. Then the magnetic impurity in the presence of the non-magnetic
potential and the pairing disorder can all be solved exactly. There are bound states for each of
the 2S + 1 eigenstates.

In figure 1, we illustrated how this solution can aid in understanding the STM results
obtained from the Bi sites directly above Zn and Ni impurity sites in the presumed top
underlying CuO2 plane of BSCCO [9, 10]. In the left panel of figure 1, we fit the Zn STM
data with a single pole obtained from equation (15) with v ≡ (v1, v2, v3) = (0, 0,±1) (or
equivalently with v = (0,±1, 0)) and a width δω chosen to fit the data. The experimental
peak centre appears at a slight offset from zero, which can be understood quantitatively by
adjusting v1 
 1 and a width broader than the offset.

In the right panel of figure 1, we used equation (18) with v = (0,±0.51,±1.01) (or
v = (0,±1.01,±0.51)) to fit the two peak positions, and adjusted the widths to those of
the data obtained above a Ni site [10]. We did not show the other two peaks expected from
equation (18). That is because the data not pictured here show that the two peaks present in
these data appear at equivalent negative biases on adjacent Bi sites [10]. In any event, our
theory suggests that the STM data for Zn are consistent with it behaving either as a strong
pairing fluctuation defect or as a strong magnetic impurity, and the Ni data suggests it behaves
as both a strong magnetic impurity and a strong pairing defect in BSCCO. The similar pair-
breaking defect strengths are consistent with the Tc-suppressions in BSCCO doped with these
elements [6].

Thus, we solved the T -matrix in this modified BCS model of a local, on-site attractive
pairing interaction with three types of defect on a site [24]. For a superconductor with
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local, near-neighbour pairing of dx2−y2 -wave symmetry, the local gap �i j at the site (i, j)
on a tetragonal lattice is coupled hierarchically to the �i ′ j ′ at every site (i ′, j ′). Hence, a
generalization of our results to d-wave superconductors would not be straightforward. A
recent work neglected these problems with local d-wave pairing, treated Ni as an S = 1/2
Ising impurity, and introduced an electronic filter by neglecting the most important Bi orbitals
in the top insulating BiO layer, in order to fit the STM data [29]. In the present work, we fit
the Ni and Zn data with s-wave pairing, a classical Ni spin, and without any BiO filter.

In summary, we have shown that disordered short-coherence-length superconductors can
exhibit pair breaking from spatial fluctuations in the pairing interaction, in a manner very
similar to that found with magnetic impurities. We studied the effects of a single site with up
to three types of defect using the T -matrix approximation, and found bound states within the
superconducting gap arising from either pairing fluctuations or magnetic impurities. Our best
fits to the STM data above the sites of Zn and Ni impurities suggest that Zn behaves either as
a strong pairing fluctuation defect or as a strong magnetic impurity, whereas Ni behaves both
as a strong magnetic impurity and as a strong pairing defect.
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